Search results for "Carbon nanofiber"

showing 10 items of 14 documents

Carbon Nanotubes: In-Situ Growth of Ultrathin Films of NiFe-LDHs: Towards a Hierarchical Synthesis of Bamboo-Like Carbon Nanotubes (Adv. Mater. Inter…

2014

In situBambooCarbon filmMaterials scienceMechanics of MaterialsCarbon nanofiberlawMechanical EngineeringNanotechnologyCarbon nanotubeThin filmlaw.inventionAdvanced Materials Interfaces
researchProduct

Theoretical and practical aspects of chemical functionalization of carbon nanofibers (CNFs): DFT calculations and adsorption study

2011

The nitric acid-functionalized commercial carbon nanofibers (CNFs) were comprehensively studied by instrumental (XRD, BET, SEM, TGA) and theoretical (DFT calculations) methods. The detailed surface study revealed the variation in the characteristics of functionalized CNFs, such as a decreased (up to 34%) surface area and impacted structural, electronic and chemical properties. The effects of functional groups were studied by comparison with pristine nanofibers. The results showed that the C-C bond lengths of the modified CNFs varied significantly. Chemical functionalization altered the frontier orbitals of the pristine material, and therefore altered the nature of their interactions with ot…

Environmental EngineeringMaterials scienceNanofiberschemistry.chemical_elementBioengineeringchemistry.chemical_compoundAdsorptionX-Ray DiffractionOrganic chemistryPhenolta116Waste Management and DisposalAqueous solutionRenewable Energy Sustainability and the EnvironmentCarbon nanofiberGeneral MedicineCarbonThermogravimetrychemistryChemical engineeringNanofiberThermogravimetryMicroscopy Electron ScanningSurface modificationAdsorptionCarbonBioresource Technology
researchProduct

Solid-State Synthesis of “Bamboo-Like” and Straight Carbon Nanotubes by Thermolysis of Hexa-peri-hexabenzocoronene–Cobalt Complexes

2006

BambooHot TemperatureTime FactorsMaterials scienceSelective chemistry of single-walled nanotubeschemistry.chemical_elementCarbon nanotubelaw.inventionBiomaterialsMicroscopy Electron TransmissionlawNanotechnologyOrganic chemistryPolycyclic CompoundsGeneral Materials ScienceArgonMethylene ChlorideNanotubes CarbonCarbon nanofiberThermal decompositionTemperatureHexa-peri-hexabenzocoroneneCobaltGeneral ChemistryMicroscopy ElectronModels ChemicalchemistryChemical engineeringMicroscopy Electron ScanningCarbon nanotube supported catalystCrystallizationCobaltBiotechnologySmall
researchProduct

Basalt Fibre Composite with Carbon Nanomodified Epoxy Matrix under Hydrothermal Ageing

2021

This work aimed to investigate the effect of hybrid carbon nanofillers (e.g., carbon nanotubes/carbon nanofibers in the ratio 1:1 by mass) over the electrical and flexural properties for an epoxy matrix and corresponding basalt fibre reinforcing composite (BFRC) subjected to full-year seasonal water absorption. Hydrothermal ageing was performed by full immersion of the tested materials into distilled water according to the following model conditions (seasons). The mechanical properties were measured in three-point bending mode before environmental ageing and after each season. Upon environmental ageing, the relative change of flexural strength and elastic modulus of the epoxy and NC was wit…

Absorption of waterMaterials sciencePolymers and PlasticsComposite numberchemistry.chemical_elementCarbon nanotubemechanical propertiesArticleepoxylaw.inventionlcsh:QD241-441lcsh:Organic chemistryFlexural strengthlawwater absorptionpolymer compositecarbon nanofillerComposite materialNanocompositeCarbon nanofiberGeneral ChemistryEpoxyhydrothermal ageingchemistryvisual_artelectrical resistancevisual_art.visual_art_mediumCarbonPolymers
researchProduct

Solid-State Pyrolyses of Metal Phthalocyanines: A Simple Approach towards Nitrogen-Doped CNTs and Metal/Carbon Nanocables

2006

Solid-state pyrolysis of organometallic precursors has emerged as an alternative method for preparing carbon nanostructures such as carbon nanotubes (CNT) and carbon anions. The morphology of the tubes can be controlled by the nature of the precursors and the pyrolysis procedures, and micrometer long nanotubes, composed of metal carbide wires encased in a graphitic sheath. Cobalt phthalocyanine (CoPc) as well as iron phthalocyanine were pyrolyzed at different temperatures to obtain CNTs. HRTEM and energy-dispersion X-Ray analysis disclosed that the core consisted of long, iron-containing single crystals and that the core was fully surrounded by crystallized graphic carbon. Iron-filled carbo…

IndolesMaterials scienceNitrogenSelective chemistry of single-walled nanotubesMetal Nanoparticleschemistry.chemical_elementElectronsNanotechnologyCarbon nanotubeIsoindolesCarbidelaw.inventionBiomaterialschemistry.chemical_compoundMicroscopy Electron TransmissionX-Ray DiffractionlawElectrochemistryNanotechnologyGeneral Materials ScienceNanotubes CarbonCarbon nanofiberTemperatureGeneral ChemistryFerrocenechemistryChemical engineeringSpectrophotometryFrit compressionMicroscopy Electron ScanningCarbonPyrolysisBiotechnologySmall
researchProduct

Photoelectrocatalysis of paracetamol on Pd–ZnO/ N-doped carbon nanofibers electrode

2021

Abstract The presence of pharmaceuticals in water bodies has become a major concern in recent years. An efficient and innovative way of eliminating these pollutants is through photoelectrocatalytic (PEC) degradation owing to its environmental sustainability and its ability to remove recalcitrant pollutants. In this study, palladium loaded zinc oxide/carbon nanofibers (CZnO–Pd) were employed as a novel photoanode for PEC degradation of paracetamol. The CZnO–Pd composite was prepared through electrospinning and atomic layer deposition (ALD). The obtained materials were characterized. Photoelectrochemical studies were carried out with linear sweep voltammetry and chronoamperometry. The removal…

PhotocurrentAtomic layer depositionMaterials scienceCarbon nanofiberNanofiberLinear sweep voltammetryGeneral Materials ScienceMineralization (soil science)ChronoamperometryElectrospinningNuclear chemistryApplied Materials Today
researchProduct

Hydrothermal Aging of an Epoxy Resin Filled with Carbon Nanofillers

2020

The effects of temperature and moisture on flexural and thermomechanical properties of neat and filled epoxy with both multiwall carbon nanotubes (CNT), carbon nanofibers (CNF), and their hybrid components were investigated. Two regimes of environmental aging were applied: Water absorption at 70 &deg

Absorption of waterMaterials sciencePolymers and Plasticsenvironmental degradationchemistry.chemical_elementYoung's modulusCarbon nanotubecarbon nanofibresArticleepoxy resinlaw.inventionmodellinglcsh:QD241-441symbols.namesakelcsh:Organic chemistryFlexural strengthlawComposite materialnanocompositecarbon nanotubesCarbon nanofibermodelingGeneral ChemistryEpoxyEquilibrium moisture contentflexural propertieschemistryvisual_artcarbon nanofiberssymbolsvisual_art.visual_art_mediumproperty prediction modelCarbonPolymers
researchProduct

Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor

2009

One-dimensional fibers and tubes are constructed through the oriented carbon-carbon cross-linking reactions towards rigid conjugated polymer networks. As the result, a template-free and one-step synthesis of CNTs and CNFs is achieved through a simple carbonization of the as-formed carbon-rich tubular and fiberlike polyphenylene precursors under argon. Microporous CNTs and CNFs with a surface area up to 900 m2 g–1 are obtained, together with HR-TEM characterizations indicating the formation of intrinsic microporous structure in these rigid carbon-rich networks. The primary electrochemical experiments reveal their promising applications as advanced electrodes in electrochemical double-layered…

chemistry.chemical_classificationMaterials scienceCarbonizationCarbon nanofiberMicroporous materialPolymerCarbon nanotubeConjugated systemCondensed Matter PhysicsElectrochemistryElectronic Optical and Magnetic Materialslaw.inventionBiomaterialsChemical engineeringchemistrylawElectrodeElectrochemistryComposite materialAdvanced Functional Materials
researchProduct

Probing Laser Plasma Dynamics Using High-Order Harmonics Generation in Carbon-Containing Nanomaterials

2021

We study high-order harmonics generation from plasmas generated from graphite, fullerenes, carbon nanotubes, carbon nanofibers, diamond nanoparticles, and graphene. Our approach utilizes a heating nanosecond laser pulse to produce plasmas that serve as the media for high harmonic generation from a subsequent driven femtosecond laser pulse. High harmonics are generated at different time delays following the plasma formation, which allows us to analyze the spreading of species with different masses. We analyze the harmonic yields from species of single carbon atom, 60 atoms (fullerene), 106 atoms (diamond nanoparticles), 109 atoms (CNTs and CNFs), and even much larger species of graphene shee…

FullereneMaterials sciencechemistry.chemical_elementCarbon nanotube01 natural sciencesMolecular physicslcsh:Technologycarbon plasmalaw.invention010309 opticslcsh:Chemistrylaw0103 physical sciencesPhysics::Atomic and Molecular ClustersHigh harmonic generationGeneral Materials Science010306 general physicsInstrumentationlcsh:QH301-705.5Fluid Flow and Transfer Processeshigh-order harmonic generationGrapheneCarbon nanofiberlcsh:TProcess Chemistry and TechnologyGeneral Engineeringlcsh:QC1-999Computer Science Applicationschemistrylcsh:Biology (General)lcsh:QD1-999lcsh:TA1-2040HarmonicsHarmonicnanoparticleslcsh:Engineering (General). Civil engineering (General)Carbonlcsh:PhysicsApplied Sciences
researchProduct

Filling carbon nanotubes with magnetic particles

2013

Magnetic carbon nanotube composites were obtained by filling carbon nanotubes with paramagnetic iron oxide particles. Measurements indicate that these functionalized nanotubes are superparamagnetic at room temperature. Details about the production and characterization of these materials are described along with the experimental procedures employed. These magnetic carbon nanotubes have the potential to be used in a wide range of applications, in particular, the production of nanofluids, which can be controlled by appropriate magnetic fields.

Materials scienceCarbon nanofiberCarbon nanotube actuatorsMechanical properties of carbon nanotubesNanotechnology02 engineering and technologyGeneral ChemistryCarbon nanotube010402 general chemistry021001 nanoscience & nanotechnologyCondensed Matter::Mesoscopic Systems and Quantum Hall Effect01 natural sciencesCAPILLARITY0104 chemical scienceslaw.inventionOptical properties of carbon nanotubesCondensed Matter::Materials ScienceCarbon nanobudPotential applications of carbon nanotubeslawCHEMISTRYMaterials ChemistryNANOPARTICLESMagnetic nanoparticles0210 nano-technology
researchProduct